Spatial regression and multiscale approximations for sequential data assimilation in ocean models
نویسندگان
چکیده
Effects of spatial regularity and locality assumptions in the extended Kalman filter are examined for oceanic data assimilation problems. Biorthogonal wavelet bases are used to implement spatial regularity through multiscale approximations, while a Markov random field (MRF) is used to impose locality through spatial regression. Both methods are shown to approximate the optimal Kalman filter estimates closely, although the stability of the estimates can be dependent on the choice of basis functions in the wavelet case. The observed filter performance is nearly constant over a wide range of values for the scalar weights (uncertainty variances) given to the model and data examined here. The MRF-based method, with its inhomogeneous and anisotropic covariance parameterization, has been shown to be particularly effective and stable in assimilation of simulated TOPEX/POSEIDON altimetry data into a reduced-gravity, shallow-water equation model.
منابع مشابه
Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملSpectral characteristics of background error covariance and multiscale data assimilation
The spatial resolutions of numerical atmospheric and oceanic circulation models have steadily increased over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical ...
متن کاملMultiscale modeling of coastal, shelf, and global ocean dynamics
In contemporary ocean science, modeling systems that integrate understanding of complex multiscale phenomena and utilize efficient numerics are paramount. Many of today's fundamental ocean science questions involve multiple scales and multiple dynamics. A new generation of modeling systems would allow to study such questions quantitatively by being less restrictive dynamically and more efficien...
متن کامل